Почему солнечные панели – это не экономия, а ловушка для простаков

Процесс монтажа солнечных батарей

Эффективность работы солнечных батарей напрямую зависит от правильности их установки. Поэтому перед началом установки солнечных батарей на скатную крышу необходимо:

  • осуществить проверку прочности поверхности крыши, возможность доступа к батареям;
  • месторасположение солнечных батарей не должно загораживаться;
  • лучше всего, если каждая плоскость будет устремлена в сторону юга.

Существует несколько способов сборки солнечных батарей. Для достижения наивысшего КПД можно комбинировать сразу несколько систем:

  • Поворотный механизм. Такая конструкция самая лучшая благодаря наличию встроенного электрического двигателя, способного менять наклон и поворот, можно непрерывно отслеживать положение солнца и получать от него максимум энергии.
  • Рамная конструкция. Этот тип монтажа солнечных батарей считается самым распространенным, так как подходит для большинства современных крыш.
  • Установка без подложки. Если скат вашей кровли приближен к сорока градусам, такой способ монтажа будет самым актуальным. В данном случае возможно заменить обычную кровлю солнечными батареями.

Монтаж солнечных батарей при помощи рамной конструкции

Этот тип самый приемлемый для многих пользователей. Для монтажа такой конструкции необходимо:

Рассчитать, выдержит ли крыша вес оборудования. Рекомендуется усилить стропила в местах установки солнечной батареи. Если вы планируете крепление нескольких батарей, для этого вам необходимо приобрести угловой профиль, имеющий размер 25×25. Если планируется монтаж на крышу дома более десяти квадратных метров, тогда для основания подойдет металлический уголок, размером 50×50. Желательно, чтобы общий каркас был сварным, он более устойчив к порывам ветра

Или можно соединить детали при помощи болтов 6 и 8 мм. Если ваш дом расположен в безветренной местности, для монтажа конструкции можно использовать алюминиевый профиль, несмотря на высокую стоимость такого профиля, его малый вес не будет создавать сильной нагрузки на крышу

Важно, чтобы скос был регулируемым. Для этого детали должны подвижно соединяться в нижней части

Для закрепления основы к кровельным балкам используется шпилька, ее диаметр должен составлять 12 мм

Место крепления можно усилить посредством шайб и подкладок. После процедуры крепления каркаса следует подключить устройство к аккумуляторам, инверторам, контроллерам и к электросети дома.

Место крепления можно усилить посредством шайб и подкладок. После процедуры крепления каркаса следует подключить устройство к аккумуляторам, инверторам, контроллерам и к электросети дома.

Солнечные батареи на крыше дома

Важно: Если вы устанавливаете панели в несколько рядов, проследите за тем, чтобы передний ряд не затемнял последующие. Солнечную панель можно использовать в доме, который на многие километры удален от электросетей. Автономная электрическая система намного выгоднее электроэнергии, так как за покупку и монтаж оборудования вы заплатите всего лишь раз, а пользоваться бесплатным электричеством сможете на протяжении многих лет

Автономная электрическая система намного выгоднее электроэнергии, так как за покупку и монтаж оборудования вы заплатите всего лишь раз, а пользоваться бесплатным электричеством сможете на протяжении многих лет

Автономная электрическая система намного выгоднее электроэнергии, так как за покупку и монтаж оборудования вы заплатите всего лишь раз, а пользоваться бесплатным электричеством сможете на протяжении многих лет

Солнечную панель можно использовать в доме, который на многие километры удален от электросетей. Автономная электрическая система намного выгоднее электроэнергии, так как за покупку и монтаж оборудования вы заплатите всего лишь раз, а пользоваться бесплатным электричеством сможете на протяжении многих лет.

Расчет производительности

Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.

Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:

  • Тип гелиопанелей и сопутствующего оборудования;
  • КПД фотоэлементов и их стоимость;
  • Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.

Как подобрать нужную производительность

Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.

Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.

С этим определились. Пойдем дальше.

Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.

При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза

Это тоже надо принимать во внимание

Теперь — как рассчитать время работы панелей?

Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.

Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!

Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.

Особенности монтажа панелей из алюминия

В целом монтаж не представляет особых сложностей – если объем работ не слишком большой, например, обшивка частного жилого дома, владелец может легко выполнить все самостоятельно. Достаточно внимательно изучить теорию и следовать всем пунктам на практике, стараясь проделывать работу максимально аккуратно. Но здесь есть некоторые нюансы, о которых новички часто забывают.

При нагревании металл сильно расширяется, а при охлаждении – сжимается. Об этом нужно помнить, устанавливая перфорированные алюминиевые панели на стену дома. Крепления нужно располагать таким образом, чтобы панели не соприкасались друг с другом – зазор в несколько миллиметров позволит компенсировать линейное расширение при нагреве. В противном случае панели могут деформироваться.

Внешний слой может быть поврежден острым предметом. Это не повлияет на срок службы материала, но значительно испортит внешний вид. Поэтому при установке следует работать максимально аккуратно.

Как видите, алюминиевые стеновые панели являются хорошим выбором. Потратив однажды приличную сумму, вы можете на многие годы забыть о необходимости ремонта или даже обслуживания фасада. Возможность самостоятельного монтажа делает материал еще более привлекательным в глазах многих владельцев домов.

Выбор параметров солнечной батареи

При выборе солнечной батареи перед покупателем встает вопрос «Как выбрать подходящую солнечную батарею?» Существует несколько видов фотоэлементов, имеющих свои преимущества и недостатки:

  1. Поликристаллические элементы, в которых полупроводник производится поликристаллическим способом, этот метод удешевляют солнечную батарею, но снижают эффективность её работы. КПД элементов составляет 17-19%.
  2. Монокристаллические. Если элементы выращиваются монокристаллическим способом, то КПД фотоэлементов составляет 20-21%. Стоимость батарей при таком способе производства кремния увеличивается, но площадь фотоэлементов для получения энергии того же количества снижается. Готовые солнечные батареи, изготовленными поликристаллическим способом имеют КПД 13-17 %, а с фотоэлементами, изготовленными монокристаллическим способом – КПД 15-18,5%,
  3. Аморфные. Самым низким КПД (4-6%) обладают солнечные батареи, в которых фотоэлементы изготавливают из аморфного кремния.
  4. Арсенид галлиевые. Для изготовления высокоэффективных преобразователей в настоящее время широко используются GaAs – Арсенид галлия, имеющий гетероструктуру и более широкую запрещенную зону, это позволяет увеличить КПД солнечных батарей до 35-40%, правда такой тип элементов имеет очень высокую цену и используется только в космической отрасли.

Рис. 2 Типы солнечных элементов

Принцип работы

Конструкция множества солнечных батарей сделана по принципу, что они в физическом смысле являются фотоэлектрическими преобразователями. Электрогенерирующий эффект проявляется в месте «p–n» перехода.

Чтобы сконцентрировать в себе солнечную энергию, полупроводники выполнены в форме панелей. По этой причине эти конструкции получили одноимённое название в независимости от их формы (гибкие или статичные) — солнечные панели.

По какому принципу работают солнечные панели и системы на их основе? Панель включает в себя 2 кремневые пластины с различимыми друг от друга свойствами. Процесс вырабатывания электроэнергии происходит так:

  1. Воздействие солнечных лучей на первую приводит к недостаче электронов.
  2. При воздействии на вторую пластину, та получает избыток электронов.
  3. К пластинам подведены полосы из меди, проводящие ток.
  4. Полосы подключаются к преобразователям напряжения с встроенными АКБ.

Основа — это кремниевые пластины. Но чтобы данную конструкцию использовать в качестве источника бесперебойного питания (а не только во время солнцестояния), к ней подключаются не дешевые аккумуляторы (с их помощью подключенные к сети объекты расходуют энергию ночью).

В промышленности конструкция для поглощения энергии Солнца сделана из многочисленных ламинированных фотоэлектрических ячеек, связанных друг с другом и поставленных на гибкой или жесткой подставке.

Коэффициент полезного действия конструкции вычисляется исходя из применения разных факторов. Основными являются — чистота задействованного кремния и размещение кристаллов.

Процесс очищения кремния довольно сложен, да и расположить кристаллы в единой направленности не легко. Сложность процессов, отвечающих за повышение КПД конвертируются в высокую цену за подобное оборудование.

Солнечные панели — перспективное направление в энергетике, поэтому в исследования новых проектов в этой сфере инвестируется многомиллиардные вложения. Каждый квартал коэффициент фотоэлектрического преобразования повышается, благодаря манипуляциям с проводниками и элементами конструкции. При этом, за основу может браться не только кремний.

2020

Ученые из Санкт-Петербурга нашли способ удешевить высокоэффективные солнечные батареи

4 февраль 2020 года в ИТМО сообщили, что группа ученых из Санкт-Петербурга предложила и экспериментально опробовала технологию создания высокоэффективных солнечных батарей на основе А3В5 полупроводниковых соединений на кремниевой подложке, которые в будущем могут иметь эффективность в полтора раза больше и при этом более низкую себестоимость, нежели фотовольтаические преобразователи с одним каскадом. Появление данной технологии некогда было предсказано нобелевским лауреатом Жоресом Ивановичем Алферовым. Результаты работы ученых опубликованы в журнале Solar Energy Materials and Solar Cells.

В ИТМО отметили, что когда в мире сокращаются запасы источников углеводородного топлива и все больше растет обеспокоенность общественности относительно экологии, ученые уделяют пристальное внимание развитию так называемых «зеленых технологий». Одной из самых популярных тем является развитие солнечной энергетики.

Однако более широкому использованию солнечных батарей препятствует ряд проблем

Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность – около 20-25%. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.

Однако более широкому использованию солнечных батарей препятствует ряд проблем. Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность – около 20-25%. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.

Петербургские ученые предложили решение данной проблемы. Исследователи из Университета ИТМО, Академического университета им. Ж.И. Алферова и Физико-технического института им. А.Ф. Иоффе показали, что A3B5 структуры можно вырастить на дешевой кремниевой подложке, что позволит существенно сократить стоимость многокаскадного солнечного элемента.

«Наша работа посвящена созданию эффективных солнечных элементов на основе А3В5 на кремниевой подложке. Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния. Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния. К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру, фосфид галлия (GaP). Однако он сам не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять GaP и добавить азот N, мы получим раствор GaPN. Уже при малых концентрациях N данный материал становится прямозонным и хорошо поглощает свет, при этом может быть интегрирован на кремниевую подложку. При этом кремний является не просто фундаментом, на который синтезируется фотоматериал – кремний сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим света в ИК-диапазоне. Одним из первых идея совмещения A3B5 структур и кремния была озвучена Жоресом Ивановичем Алферовым»,отметил Иван Мухин, сотрудник Университета ИТМО, заведующий лабораторией Академического университета, соавтор исследования

В лаборатории ученым удалось получить верхний слой солнечной батареи, интегрированный на кремниевую подложку. Если таких фотоактивных слоев будет больше, то и эффективность солнечной батареи станет существенно выше, так как каждый слой солнечной батареи будет эффективно поглощать свою часть солнечного спектра.

Пока в лаборатории был создан первый небольшой прототип солнечной батареи на основе элементов А3В5 на кремниевой подложке. На февраль 2020 года перед учеными стоит задача создать солнечный элемент, имеющий в своем составе несколько фотоактивных слоев. Такие солнечные батареи заметно эффективнее поглощают солнечный свет и генерируют электрическую энергию.

«Мы научились растить самый верхний слой. Эта система материалов потенциально может быть использована и для промежуточных слоев. Если добавить мышьяк As, то получится GaPNAs – из него на кремниевой подложке можно вырастить несколько каскадов, работающих в разных частях солнечного спектра. Как показали наши предыдущие работы, потенциально эффективность таких солнечных батарей может превышать 40% при концентрации света, то есть быть в 1,5 раза выше, нежели в современных Si технологиях».отметил Иван Мухин, сотрудник Университета ИТМО, заведующий лабораторией Академического университета, соавтор исследования

Выгодно или нет?

«Там, где есть свет, эти панели использовать невыгодно. Остаются турбазы, фермерства, стоянки чабанов. У нас закупают оборудование мощностью от 300 Вт до 15 кВт, самые ходовые – на 3-6 кВт. В год продаем 10-15 станций, покупают или чтобы увеличить мощность уже используемых батарей, или пробуют впервые», — рассказал Sibnet генеральный директор предприятия «Солнечная энергия» Андрей Ялбаков.

Представитель компании «Хевел» Антон Усачев считает, что при таком высоком уровне инсоляции (степень освещенности в течение суток), как в Горном Алтае, окупить оборудование можно будет через пять-семь лет. И быстрее, если одновременно использовать дизель. Он добавил, что установка в доме солнечной микрогенерации мощностью 1 кВт обойдется в 100 тысяч рублей, на дом нужно 3–5 кВт, то есть, конечная цена составит 300–500 тысяч рублей.

Фото: «Солнечная энергия»

В республике небольшие солнечные батареи уже несколько лет используют на кордонах Алтайского заповедника по берегам Телецкого озера, часто их комбинируют с ветро-установками. По словам замдиректора заповедника Светланы Щигревой, их с лихвой хватает для всех нужд кордонов, госинспекторов и их семей. Такая установка стоит и в офисе заповедника, в Артыбаше.

«Об окупаемости говорить еще рано, ее мы установили лишь в прошлом году, но вырабатываемой энергии нам хватает. И, конечно же, без солнечных батарей на отдаленных кордонах, куда свет провести в принципе невозможно, никак не обойтись», — говорит она.

Об окупаемости говорить не столько рано, сколько сложно ее оценить однозначно. Но для сравнения: в Горно-Алтайске кВт*ч в частном секторе стоит 4,63 рубля. Среднестатистический частный дом с газовым отоплением и малым количеством электроприборов обходится в 500-800 рублей в месяц. В домах с электрокотлом за электроэнергию летом платят около 3 тысяч, зимой — более 7 тысяч рублей в месяц.

Инструкция по монтажу

Установка АКП начинается с монтажа обрешетки, или, как ее чаще называют, подсистемы. Потребуется образовать несущую конструкцию, каркас из специализированных металлических деталей, который образует систему планок, образующих ровную плоскость.

  • Прежде всего, надо сделать разметку на стене. Будут отмечены места установки кронштейнов, прикрепляемых непосредственно к стене.
  • Вертикальные ряды кронштейнов размечаются по 45-50 см друг от друга.
  • Расстояние между соседними кронштейнами по горизонтали напрямую зависит от размера облицовки.
  • Кронштейн состоит из двух частей, одна из них крепится на стену, вторая — подвижная, она служит для крепления несущего профиля и, одновременно, для настройки ровной плоскости системы. Таким образом компенсируются все неровности стен, которые могут помешать ровной установке обшивки. Крепление кронштейна на стену осуществляется анкерным дюбелем, через поролоновую прокладку, служащую для исключения образования мостика холода.

ОСТОРОЖНО! Крайние ряды кронштейнов размечаются не менее, чем за 15 см от края стены

# 1 Экономика вам не подходит

Есть несколько факторов, некоторые из которых обсуждались выше, которые могут негативно повлиять на экономику солнечной энергетики. Если эти факторы применимы к вам, вы можете обнаружить, что практически не сэкономите денег, перейдя на солнечную энергию.

Вот факторы, которые негативно влияют на вашу финансовую отдачу от установки солнечных батарей:

  • Высокие первоначальные затраты для вашей системы солнечной энергии. Обычно это связано с тем, что солнечное оборудование и / или затраты на установку дороги там, где вы живете.
  • Ограничения по пространству Это означает, что вы не можете установить систему солнечных панелей, достаточно большую, чтобы обеспечить достаточную экономию на счетах за электроэнергию.
  • Проблемы с крышей такие как затенение или неидеальное направление или угол, негативно влияют на солнечный потенциал вашего дома.
  • Низкие затраты энергии, будь то из-за низких тарифов на электроэнергию или низкого потребления, означает, что вы не тратите много на электроэнергию с самого начала.
  • Неблагоприятное финансирование: Ваш солнечный кредит предоставляется с высокой процентной ставкой из-за плохой кредитной истории или налагает обременительные условия, такие как залоговое удержание с приоритетом.
  • Отсутствие стимулов: вы не имеете права на поощрения за солнечную энергию, которые могут существенно снизить системные затраты, такие как налоговая льгота на солнечную энергию или SREC (кредиты на возобновляемую солнечную энергию).

Комбинация одного или нескольких из вышеперечисленных сократит ваши ежемесячные сбережения, а также увеличит общий срок окупаемости ваших инвестиций в солнечную энергию (чего вы точно не хотите).

Теперь вполне возможно, что, несмотря на эти факторы, вы сможете сэкономить тысячи или даже десятки тысяч долларов в течение срока службы ваших солнечных панелей — просто убедитесь, что это так, прежде чем сделать решающий шаг.

голоса

Рейтинг статьи

Солнечные батареи для дома: принцип работы

В России и других странах с холодной зимой многие сомневаются в эффективности работы подобных установок, поскольку много дней в году солнца не бывает, поэтому накопленная за теплое время солнечная энергия при сильных морозах быстро растратится.

Однако подобные установки обладают достаточно большой мощностью, которая составляет от 200 Вт для одного модуля, они способны производить энергию в течение всего светового дня и способны ловить свет даже при осадках или густых облаках. Единственный минус – это снижение мощности в непогоду примерно в два раза. Но, с другой стороны, солнечные батареи обладают способностью накапливать энергию, которая будет отдаваться при недостаточном солнечном свете.

Новое поколение установок на основе аморфного кремния отличается от предыдущего тем, что такие батареи не нужно направлять на солнце, для их нормальной работы будет достаточно и средней области. Но они имеют существенный недостаток – под их размещение нужно выделять большую площадь. И производительность на севере России будет значительно ниже, чем в Крыму или Краснодарском крае. Но при этом в том же Санкт-Петербурге их все равно можно использовать с успехом целый год.

99bb6505f517bf2bc42ed72c803598c1.jpe 4e759665bff08246cc552a491745eeb9.jpe

6793705111331a3c99e99d626ef7d14a.jpe

4e5d67ed86018253260bc43e136410ef.jpe

Принцип работы установок следующий:

  • генераторами электричества в солнечных батареях выступают модели, которые ловят солнечную энергию. Они работают на основе фотоэлектрических реакций и вырабатывают ток по принципу эмиссии нагретых тел;
  • панели сделаны на основе кремния. Коэффициент полезного действия одной панели составляет примерно 30 процентов при мощности в 300 Вт. А чтобы получить лучший результат, несколько десятков элементов объединены в цепи, благодаря чему установки способны работать при средней облачности;
  • чтобы температура в доме площадью в 30 квадратных метров в течение года была комфортной, общая площадь модулей должна быть как минимум 100 квадратных метров, а в самом доме нужно ставить аккумуляторы и распределительное оборудование. Судя по отзывам владельцев частных домов, это одно из труднейших условий для установки солнечных батарей.

Накопления отходов солнечной энергетики

Солнечные модули, которые отработали свой срок, называются электронным мусором (e-waste). Каждый год мировой рынок фиксирует возрастание доли солнечной энергетики, поэтому мировые объемы e-waste тоже возрастают. Например, в 2018 году объем e-waste равнялся 50 миллионам тоннам. Таким образом, вопрос про утилизацию отработанных модулей очень актуален. Ведь через 20 -30 лет количество e-waste возрастет, поэтому чтобы планета не задохнулась от новых отходов, стоит уже сегодня побеспокоится о строительстве заводов по переработке мусора. В противном случае появится еще один «мусорный остров» Гигантский остров мусора посреди Тихого океана.

Напомним, что в фотоэлементы содержат ядовитые вещества: кадмий, мышьяк, свинец, галлий и другие. В новостях науки неоднократно упоминается, что ведутся разработки по усовершенствованию полупроводников (использовать висмут с сурьмой) для солнечных модулей, но данная технология все еще на этапе разработки.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий