Что представляет собой умная теплица: 6 характеристик

Автоматика для теплиц

Основное назначение системы автоматизации выращивания растений состоит в том, чтобы обеспечить все условия для развития без участия или с минимальным участием человека. Основные функции автоматики следующие:

  • Система проветривания и поддержания нормальной температуры внутри, в зависимости от наружной температуры воздуха.
  • Автоматический капельный полив и подкормка.
  • Система подогрева воздуха в холодное время года.

Для нормального развития растений в темное время необходимо дополнительное освещение, которое также включается с помощью системы автоматики.

Автоматика для проветривания

Автоматическая система для проветривания может быть двух типов, но основным элементом является небольшой гидроцилиндр, который открывает фрамуги для проветривания. Один из способов довольно простой, для открытия используется гидроцилиндр, полость которого наполнена специальной жидкостью.

При повышении температуры жидкость расширяется и выдвигает поршень, который и открывает фрамугу. При снижении температуры жидкость сжимается, и под действием пружины поршень возвращается, закрывая окно. Рис. 8 Устройство автоматического проветривания

Другой способ более точный и сложный, с установкой контактного термометра и сложного механизма открытия и закрытия фрамуги. Это позволяет более точно регулировать температуру, но требует немалых затрат на установку.

Системы капельного полива

При капельном поливе вода поступает к корням растений небольшими порциями, успевая при этом немножко прогреться. При этом почва все время остается влажной, что благоприятно сказывается на росте. Рис. 9 Капельный полив

Для автоматического полива используют шланги с капиллярными отверстиями, через которые вода капает к корневой системе.  Емкость для воды можно устанавливать внутри теплицы или снаружи. В резервуар вода подается из водопровода, контроль уровня и пополнение при расходе осуществляется с помощью поплавкового затвора.

Из резервуара вода поступает к капиллярным трубкам через кран с дистанционным управлением. Он может открываться с помощью автоматики либо в определенное заданное время, или при изменении уровня влажности в теплице. Систему полива можно использовать и для подкормки, добавляя в резервуар жидкое удобрение.

Автоматика для обогрева почвы и воздуха

Если теплица используется в холодное время года, то для созревания овощей необходим обогрев. Для обогрева применяют несколько способов:

  • установка электрических тепловых пушек, калориферов и обогревателей;
  • прокладка системы теплый пол, с подключением к котлу или электричеству;
  • установка котла, газового или электрического с радиаторами по периметру теплицы.

Рис. 10 Схема обогрева теплицы

Система автоматики должна включать отопление при понижении температуры и выключаться при достижении оптимального уровня.

Приборы освещения

Недостаток света сказывается на развитии овощей, поэтому необходимо в теплице устанавливать освещение для продления светового дня осенью и в зимнее время. Продолжительность светового дня должна быть в пределах 12-16 часов в сутки.

Для освещения используют следующие типы ламп:

  • накаливания, создает инфракрасное излучение и при близком расположении от растений может их обжечь;
  • натриевая, самая эффективная для роста растений, но имеет малый срок эксплуатации;
  • светодиодная, самая широко применяемая лампа для освещения, дает яркий свет, приближенный к солнечному;
  • люминесцентная, обладает ярким светом и длительным сроком службы.

Рис.11 Светильники для освещения

Кроме того, для освещения используют ультрафиолетовые и инфракрасные лампы. Причем инфракрасная лампа может не только освещать, но и обогревать теплицу. Ну а автоматизировать процесс включения света не сложно, достаточно установить датчики освещенности, или таймеры. Таймеры будут включать и выключать свет в определенное заданное время. 

Проведение калибровки

На датчике будут отображаться значения, которые напрямую связаны с кислотностью земли. Соответственно, перед запуском автополивщика необходимо выполнить простую калибровку. Она проводится таким образом:

  • Сначала записываются цифры, полученные после того, как датчик воткнут с сухую почву. Это минимальная влажность.
  • Затем нужно полить растение и подождать момента, когда вода впитается в землю. Показатели должны оставаться на стабильном уровне, зачастую это в районе 60%, но все растения разные, поэтому предварительно узнайте, насколько ваш зеленый друг требователен к этому параметру. Их также следует сохранить, поскольку это максимальная влажность.
  • С готовыми результатами следует отредактировать наш скетч (код в среде Arduino IDE), изменяем значение минимальной влажности, в нашем коде это — MIN _HUM и MAX_HUM на параметр нормальной влажности.
  • Остается перепрошить Arduino Uno, для этого подключает через кабель к пк, выбираем порт, плату, жмем в правом углу кнопку загрузить.
  • Расширение функциональности автополивщика

Выше была предложена система для одного горшка. На практике, автополив на Адруино эффективнее применять для нескольких растений. Для этого к Адруино можно подключить дополнительные насосы и сенсоры влажности. Однако можно поступить намного проще. В поставляемом с насосом шланге можно сделать дырочки с учетом расстояния, на котором расположены растения. В полученные отверстия можно воткнуть стержни простых ручек. Результат получится примерно такого вида:

Часто в помещениях растения в горшках располагают на подоконнике одним рядом. Это облегчает задачу, поскольку трубка крепится к горшкам таким образом, чтобы распределить выводы с водой по одному на растение. Единственное — с таким решением, настройка автоматического полива выполняется с учетом одного растения. Если горшки более-менее одинаковые по габаритам, скорость высыхания в них почвы должна быть равной. Как вариант, можно совместить оба способа масштабирования, что позволит поделить всю растительность на примерно одинаковые по габаритам горшки.

Как сделать умную теплицу своими руками

Сделать умную теплицу своими руками несложно, если знать основные особенности ее обустройства. Основное отличие умной теплицы от обычной в том, что все процессы, происходящие в конструкции закрытого грунта, являются автоматизированными, и практически не требуют вмешательства человека.

Автоматика поможет не только поддерживать оптимальный температурно-влажностный режим, но и вовремя проводить проветривание, включать обогрев или подсветку. С помощью таких систем овощи, фрукты и зелень можно выращивать круглогодично с минимальными трудозатратами.

Как сделать такую конструкцию своими руками вы узнаете из видео.

Для чего нужна

Успешное выращивание растений практически полностью обеспечивается благоприятным микроклиматом внутри помещения. На рисунке 1 приведены основные условия обеспечения благоприятного микроклимата: уровень освещения, влажности и вентиляции. Добиться правильной температуры и влажности помогут автоматические системы вентиляции.

В противном случае, микроклимат будет нарушен и это приведет к отрицательным последствиям:

  1. Температура внутри будет гораздо выше, чем снаружи, создавая благоприятные условия для развития болезнетворных микроорганизмов;
  2. Повысится и температура грунта, что тоже нежелательно, так как семена некоторых растений не прорастают при повышенных температурах;
  3. Негерметичность конструкции или неправильно проведенный расчет вентиляции приведет к продуванию строения, и из него будет постоянно уходить теплый воздух;

Рисунок 1. Соблюдение благоприятного микроклимата

Поскольку микроклимат помещения постоянно меняется под воздействием освещения, погодных условий и других внешних факторов, уследить за его стабильностью практически невозможно. Именно поэтому и были придуманы автоматические системы вентиляции, полива и проветривания.

Особенности построения

Чтобы построить умную теплицу своими руками, нужно учесть некоторые особенности конструкции.

Рекомендуем ознакомиться с практическими советами по обустройству автоматики своими руками (рисунок 2):

  1. Правильно подобрать место для строительства, чтобы максимально использовать солнечную энергию. Оптимальным считается размещение с юга на север, чтобы все растения в течение дня равномерно прогревались и освещались солнцем. Также следует обустроить защиту от ветра, к примеру, высадив в метре от здания живую изгородь.
  2. Спроектировать каркас так, чтобы форточки и окна находились в верхней части конструкции. Холодный воздух, проникая внутрь, опускается вниз, поэтому и форточки нужно располагать как можно выше для защиты растений от сквозняков. Для этой же цели нужно сделать прочные двери без щелей, которые не будут пропускать холодный воздух внутрь.
  3. Установить надежную автоматику для полива и проветривания. Для автоматического открывания форточек достаточно установить гидроцилиндры, которые приводятся в действие при нагревании жидкости, находящейся внутри цилиндра и толкают шток, открывающий окно. При снижении температуры действие происходит в обратном порядке. Для автоматического внесения влаги рекомендуют устанавливать систему капельного полива с датчиком.

Если помещение будет использоваться зимой, в ней устанавливают обогревательные приборы и аккумуляторы с датчиками, которые будут автоматически включать обогрев при определенном температурном режиме окружающей среды.

Польза

Польза автоматики очевидна: любые растения в таких конструкциях можно выращивать круглогодично с минимальным участием человека.

Рисунок 2. Пошаговая инструкция для строительства теплицы своими руками

Существует мнение, что обустройство умной теплицы влечет серьезные финансовые расходы, но эта точка зрения правдива лишь отчасти. Для автоматизации необходимо купить датчики и систему капельного полива, а монтаж можно провести и своими руками.

Из чего сооружается умная теплица

Профессионально построенная умная теплица

Для того, чтобы изготовить на загородном участке теплицу такого типа необходимо изначально составить проект. В нем указываются все размеры и количество используемого материала.Конструкция теплицы делится на:

  • Каркас для теплицы.
  • Покрытие для теплицы.

Каркас для теплицы

На данный момент изготовление каркаса для теплицы любого размера происходит с применением:

  • Металла.
  • Древесины.

Металлический каркас представляет собой довольно простое сооружение, в котором используются трубы разного размера и диаметра. Есть несущие конструкции и те, с помощью которых изготавливается обрешетка.

Все элементы такого каркаса скрепляются между собой при помощи сварочных работ.Для того, чтобы изготовить металлический каркас понадобится:

  • Металлические трубы.
  • Арматура.
  • Болгарка (для подрезания труб).
  • Рулетка.
  • Уровень.
  • Бетонный раствор.
  • Подручный инструмент.

Как только площадь для теплицы готова, то металлические трубы должны быть забетонированы в грунте. После этого из вспомогательных элементов сооружается на них обрешетка, которая со временем будет покрыта.
На видео показан пример таких работ.

Деревянный каркас

Чертеж для деревянного каркаса

Деревянный каркас можно изготовить самостоятельно, но следует помнить, что период эксплуатации не более 10 лет.Деревянный каркас довольно прочный и чтобы его соорудить понадобится:

  • Деревянные планки и бруски (бревна).
  • Дюбеля.
  • Саморезы.
  • Подручный инструмент.
  • Шуруповерт.
  • Перфоратор.
  • Линейка.
  • Рулетка.
  • Электролобзик.

Этот каркас можно и не бетонировать, все зависит от масштаба теплицы и от времени ее эксплуатации.

Также стоит учесть, что древесина отлично впитывают влагу и реагирует деформациями на перепады температуры. Именно по этой причине после установки деревянного каркаса необходимо его покрыть краской или щадящим лаком.

Какой каркас выбрать для умной теплицы

Металлический каркас самый долговечный

Теплица умная может быть как с деревянным, так и с металлическим каркасом. В данной ситуации все будет зависеть от срока использования теплицы и от ее покрытия.Небольшие характеристики материала:

  • Конечно, самым прочным, надежным и долговечным каркасом будет металлический. Только его поверхность может ржаветь или окислятся в результате поливочных работ.
    Именно поэтому стоит его покрыть грунтовым слоем и после этого покрасить.
  • Деревянный каркас также прочный и долговечный. Только срок эксплуатации самой древесины в несколько раз меньше, чем металла.

Покрытие каркаса для теплицы

Для того, чтобы правильно выбрать покрытие для теплицы необходимо выбрать качественное покрытие.Оно может быть:

  • Стеклянным.
  • Из полиэтиленовой пленки.
  • Из поликарбоната.

Характеристики:

  • Стекло может быть использовано только на деревянном каркасе, так как имеет свой особый метод монтажа. Оно очень хорошо пропускает свет.
    Поэтому довольно часто его покрывают защитной пленкой, чтобы обезопасить растения от обжигающих солнечных лучей.
  • Пленка также популярна, но она является менее прочной, чем стекло. Цена ее довольно доступная и использована она может быть на любом каркасе.
    Есть большой выбор такого покрытия и разные его виды. Каждый отличается своими свойствами и методами применения.

Поликарбонат для покрытия теплицы

Устройство теплицы из поликарбоната

По словам Курдюмова можно сделать вывод, что покрытие теплицы должно быть прочным и качественным. Также оно должно обладать отличными техническими характеристиками.Отличительные характеристики:

  • Поликарбонат является именно таким материалом. Имеет он довольно большой выбор расцветок и видов. Но для конструкции теплиц используется только сотовый поликарбонат.
  • Он прочный и надежный и способен выдерживать значительные нагрузки.
  • Он не горит и не впитывает влагу.
  • Также не реагирует на температурные перепады и не деформируется под воздействием климатических или погодных условий.
  • Благодаря тому, что поликарбонат внутри имеет соты, то и свет он равномерно рассеивает внутри теплицы. Он хорошо сохраняет тепло и не способен пропускать холод.

Автоматика для теплиц

Основное назначение системы автоматизации выращивания растений состоит в том, чтобы обеспечить все условия для развития без участия или с минимальным участием человека. Основные функции автоматики следующие:

  • Система проветривания и поддержания нормальной температуры внутри, в зависимости от наружной температуры воздуха.
  • Автоматический капельный полив и подкормка.
  • Система подогрева воздуха в холодное время года.

Для нормального развития растений в темное время необходимо дополнительное освещение, которое также включается с помощью системы автоматики.

Автоматика для проветривания

Автоматическая система для проветривания может быть двух типов, но основным элементом является небольшой гидроцилиндр, который открывает фрамуги для проветривания. Один из способов довольно простой, для открытия используется гидроцилиндр, полость которого наполнена специальной жидкостью.

При повышении температуры жидкость расширяется и выдвигает поршень, который и открывает фрамугу. При снижении температуры жидкость сжимается, и под действием пружины поршень возвращается, закрывая окно. Рис. 8 Устройство автоматического проветривания

Другой способ более точный и сложный, с установкой контактного термометра и сложного механизма открытия и закрытия фрамуги. Это позволяет более точно регулировать температуру, но требует немалых затрат на установку.

Системы капельного полива

При капельном поливе вода поступает к корням растений небольшими порциями, успевая при этом немножко прогреться. При этом почва все время остается влажной, что благоприятно сказывается на росте. Рис. 9 Капельный полив

Для автоматического полива используют шланги с капиллярными отверстиями, через которые вода капает к корневой системе.  Емкость для воды можно устанавливать внутри теплицы или снаружи. В резервуар вода подается из водопровода, контроль уровня и пополнение при расходе осуществляется с помощью поплавкового затвора.

Из резервуара вода поступает к капиллярным трубкам через кран с дистанционным управлением. Он может открываться с помощью автоматики либо в определенное заданное время, или при изменении уровня влажности в теплице. Систему полива можно использовать и для подкормки, добавляя в резервуар жидкое удобрение.

Автоматика для обогрева почвы и воздуха

Если теплица используется в холодное время года, то для созревания овощей необходим обогрев. Для обогрева применяют несколько способов:

  • установка электрических тепловых пушек, калориферов и обогревателей;
  • прокладка системы теплый пол, с подключением к котлу или электричеству;
  • установка котла, газового или электрического с радиаторами по периметру теплицы.

Рис. 10 Схема обогрева теплицы

Система автоматики должна включать отопление при понижении температуры и выключаться при достижении оптимального уровня.

Приборы освещения

Недостаток света сказывается на развитии овощей, поэтому необходимо в теплице устанавливать освещение для продления светового дня осенью и в зимнее время. Продолжительность светового дня должна быть в пределах 12-16 часов в сутки.

Для освещения используют следующие типы ламп:

  • накаливания, создает инфракрасное излучение и при близком расположении от растений может их обжечь;
  • натриевая, самая эффективная для роста растений, но имеет малый срок эксплуатации;
  • светодиодная, самая широко применяемая лампа для освещения, дает яркий свет, приближенный к солнечному;
  • люминесцентная, обладает ярким светом и длительным сроком службы.

Рис.11 Светильники для освещения

Кроме того, для освещения используют ультрафиолетовые и инфракрасные лампы. Причем инфракрасная лампа может не только освещать, но и обогревать теплицу. Ну а автоматизировать процесс включения света не сложно, достаточно установить датчики освещенности, или таймеры. Таймеры будут включать и выключать свет в определенное заданное время. 

Работа для робота

Робототехнику в тепличном овощеводстве можно разделить на две категории: роботы для сервисной зоны и роботы для рассадных и овощных отделений, обращает внимание Александр Ачкасов, директор по инновациям НПФ «ФИТО» (проектирование и строительство тепличных комплексов и энергоцентров под ключ). Первая группа, по его словам, решает задачи внутренней логистики и упаковки Здесь речь идет о взаимодействии робота с тарой и упаковкой, поэтому в большинстве случаев задачи имеют слабовыраженную отраслевую специфику, а решения могут строиться на базе существующих промышленных роботизированных платформ

«Такие решения отработаны и все чаще встречаются на рынке, но процент реализованных проектов с их применением пока еще невелик, т. к. им приходится конкурировать с менее гибкими автоматическими линиями, на стороне которых, как правило, большая производительность и меньшая стоимость», — отмечает Александр Ачкасов.

Вторая группа, продолжает он, решает задачи мониторинга, ухода за растениями и сбора урожая. Здесь уже речь идет о необходимости взаимодействия робота с растениями и, ввиду сложности и специфичности задач, все еще о прототипах, а не готовых продуктах для рынка.

«Таким образом, в тепличном овощеводстве роботы скорее редкость, но общий вектор на роботизацию не обходит отрасль стороной, и из года в год появляется все больше как новых идей, так и представляемых прототипов», — уверен Александр Ачкасов.

Более перспективным и интересным направлением он считает создание роботов для овощных отделений. «Фонд оплаты труда в тепличном овощеводстве, в зависимости от региона, может составлять от 20 до 50 % от общих затрат, — рассказывает специалист НПФ «ФИТО». — При этом практически вся работа с плодовыми и овощными культурами осуществляется вручную и представляет собой выполнение однотипных повторяющихся задач, зачастую требуя при этом высокой степени концентрации».

Например, как рассказал Александр Ачкасов, робот-скаут, используя технологии машинного зрения, может повысить точность и качество контроля за текущим состоянием растений, а также эффективность их биологической защиты. «Мне известны два прототипа робота данного типа, один из них — наш собственный, — отмечает специалист. — В перспективе по результатам обхода такой робот может выдавать объективную информацию о качестве вегетации и плодоношения, наличии и локализации патологий и вредителей».

Робот-резчик может помочь в выполнении одной из самых массовых операций в теплице — удалении листа, продолжает Александр Ачкасов. По его словам, чистая скорость по удалению листа опытным работником в ближайшее время точно останется непревзойденной, но если говорить о производительности в неделю и, например, стоит задача дезинфекции ножа при переходе от растения к растению, то здесь уже робот может превзойти человека

«Мне известен один прототип данного робота, работы над ним ведутся более 10 лет, и, несмотря на успехи в условиях испытательных теплиц, рыночное решение еще не готово», — обращает внимание специалист

Еще один тип робота — робот-сборщик, призванный помочь непосредственно в сборе урожая. «Существует более пяти прототипов подобных роботов, каждый из которых специализируется на своей культуре», — говорит Александр Ачкасов. Он подчеркивает, что, как и в случае с роботом-резчиком, данные роботы уступают в скорости человеку, но ставка делается на возможность круглосуточной работы. «Таким образом, ни один из известных мне разрабатываемых в настоящее время прототипов не предполагает замену один в один текущих ролей людей на тепличном комбинате. Это говорит о том, что роботы в тепличном овощеводстве если и смогут изменить состав и принцип работ, то пока не заменят людей полностью даже на отдельном участке», — заключает специалист НПФ «ФИТО».

Безусловно, оценивать экономическую выгоду без конкретных цифр по стоимости вышеперечисленных решений сложно, убежден Александр Ачкасов. Но в сфере инновационных разработок в целом нельзя просто сравнивать себестоимость и делать выводы, ведь инновации часто выходят за рамки экономии и оптимизации, создавая добавленную стоимость в виде предсказуемости, прозрачности и качества результата, подытоживает специалист.

Модуль Wi-Fi ESP8266

В текущей версии используется WI-FI-модуль на основе чипа ESP8266. Если вы не хотите использовать WI-FI в проекте – закомментируйте USE_WIFI_MODULE в файле Globals.h.
Если у вас возникли проблемы с работой WI-FI-модуля – можно включить отладочный режим (не работает совместно с конфигуратором!), раскомментировав WIFI_DEBUG в файле Globals.h. Модуль ESP8266 соединён с Serial2 Меги (пины 16 и 17, см. схему выше).

В текущей редакции реализован мост UART-TCP/IP: соединившись с IP, которое выдал роутер модулю ESP – можно посылать команды контроллеру так же, как если бы это было посредством соединения через UART, т.е.: любая команда начинается с CTGET= или CTSET=, и заканчивается переводом строки \r\n.

Работа с ESP протестирована на версии AT-прошивки 0.40, работоспособность на других прошивках не гарантируется!

Автоматизируем по-хитрому и домашними средствами

Давайте посмотрим, как можно обеспечить тот же автополив растениям подручными средствами:

Способ №1. Солнечная дистиляцция

Это – очень простой способ автополива, который дает достаточно влаги для растений даже в самые жаркие дни. Суть этого принципа – в солнечной дистилляции – когда вода греется до выделения пара, а этот пар потом конденсируется в воду.

Итак, берем две пластиковые бутылки разного размера, в одну из них наливаем воду, а вторую используем как колпак для нее. Когда вода от солнца будет испаряться, пар осядет на стенках колпака. Такой конденсат хорошо увлажняет грунт, и чем более палит солнце, тем больше влаги получат растения.

Компоненты и их описания

Arduino Uno

Arduino взаимодействует через датчики с окружающей средой и обрабатывает поступившую информацию в соответствии с заложенной в неё программой. Подробнее с платой Ардуино Уно можно ознакомиться здесь.

Ардуино Уно

Датчик влажности почвы

Измерение влажности почвы на базе Arduino производится с помощью датчика влажности. Датчик имеет два контакта. Через эти контакты при погружении их в грунт протекает ток. Величина тока зависит от сопротивления грунта. Поскольку вода является хорошим проводником тока, наличие влаги в почве сильно влияет на показатель сопротивления. Это значит, чем больше влажность почвы, тем меньше она оказывает сопротивление току.

Датчик влажности почвы

Этот датчик может выполнять свою работу в цифровом и аналоговом режимах. В нашем проекте используется датчик в цифровом режиме.
На модуле датчика есть потенциометр. С помощью этого потенциометра устанавливается пороговое значение. Также на модуле установлен компаратор. Компаратор сравнивает данные выхода датчика с пороговым значением и после этого даёт нам выходной сигнал через цифровой вывод. Когда значение датчика больше чем пороговое, цифровой выход передаёт 5 вольт (HIGH), земля сухая. В противном случае, когда данные датчика будут меньше чем пороговые, на цифровой вывод передаётся 0 вольт (LOW), земля влажная.

Этим потенциометром необходимо отрегулировать степень сухости почвы, когда как вы считаете нужно начать полив.

Фоторезистор

Фоторезистор (LDR) — это светочувствительное устройство, которое используются для определения интенсивности освещения. Значение сопротивления LDR зависит от освещённости. Чем больше света, тем меньше сопротивление. Совместно с резистором, фоторезистор образует делитель напряжения. Резистор в нашем случае взяли 10кОм.

Делитель напряжения

Подключив выход делителя Uin к аналоговому входу Ардуино, мы сможем считывать напряжения на выходе делителя. Напряжение на выходе будет меняться в зависимости от сопротивления фоторезистора. Минимальное напряжение соответствует темноте, максимальное – максимальной освещённости.

В этом проекте полив начинается в соответствии с пороговым значением напряжения. В утренние часы, когда считается целесообразным начать полив, напряжение на выходе делителя равно 400. Примем это значение как пороговое. Так если напряжения на делителе меньше или равно 400, это означает, что сейчас ночь и насос должен быть выключен.
Меняя пороговое значение можно настроить период работы автополива.

Релейный модуль

Реле представляет собой переключатель с электромеханическим или электрическим приводом.

Релейный модуль

Привод реле приводится в действие небольшим напряжением, например, 5 вольт от микроконтроллера, при этом замыкается или размыкается цепь высокого напряжения.

Схема реле

В этом проекте используется 12 вольтовый водяной насос. Arduino Uno не может управлять напрямую насосом, поскольку максимальное напряжение на выводах Ардуино 5 вольт. Здесь нам приходит на помощь релейный модуль.

Релейный модуль имеет два типа контактов: нормально замкнутые и нормально разомкнутые контакты. Нормально замкнутые без управляющего напряжения замкнуты, при подаче напряжения размыкаются. Соответственно нормально разомкнутые без напряжения разомкнуты, при подаче управляющего напряжения замыкаются. В проекте используются нормально разомкнутые контакты.

Водяной насос

В проекте используем 12-и вольтовый погружной насос с 18-ваттным двигателем. Он может поднимать воду до 1,7 метра.

Водяной насос

Этот насос можно эксплуатировать только тогда, когда он полностью погружен в воду. Это налагает некие обязательства по контролю уровня воды в ёмкости. Если водяной насос будет работать без воды, он просто-напросто сгорит.

Макетная плата

Макетная плата представляет собой соединительную плату, используемую для создания прототипов проектов электроники, без пайки.

Умная теплица из поликарбоната

Устройство умной теплицы

Почему именно теплица из поликарбоната умная? Все очень просто, этот материал отвечает всем требованиям конструкции.
Он имеет отличные технические показатели, которые помогут сэкономить тепло и правильно распределит солнечные лучи. Влага внутри будет сохраняться дольше.
Что нужно сделать для создания умной теплицы? Как и говорилось выше, умная теплица представляет собой конструкцию с автоматическим поливом, обогревом и проветриванием.

Автоматический полив в теплице

Автоматический полив можно организовать в принципе в любой конструкции теплицы.Для этого понадобиться:

  • Трубы.
  • Насадки.
  • Автоматика.
  • Постоянное электроснабжение.

Особенности:

  • Стоит учесть, что для того, чтобы можно было организовать автоматический полив нужно иметь постоянный бесперебойный источник водоснабжения. Это может быть колодец или скважина с насосным оборудованием для постоянной подачи воды.
  • Трубы проводятся в теплице согласно установленной системе полива. Как правило, они прокладываются вдоль посаженых растений или между грядками.
    Все зависит от того, на сколько растение любит влагу. Также используются многочисленные насадки (капельное орошение, дождевальное, внутрипочвенное).
  • Что касается автоматики, то она должна быть качественной. Автоматический полив может включаться от определенного пульта управления, который находится рядом с конструкцией, а может и от датчика, который выставляется на определенную температуру в конструкции или на уровень влажности.

Подключить оборудование можно и самостоятельно. На фото показаны примеры такой теплицы с автоматическим оборудованием.

Самостоятельное автоматизирование теплицы

Автоматическое проветривание

Теплицы в разумном управлении помогают экономить время. Это касается и проветривания теплицы.
Оно необходимо для того, чтобы вовнутрь теплицы поступал свежий воздух, а прогретые воздушные массы вышли наружу.

Этапы работы:

  • Осуществляется проветривание теплицы за счет открытия форточек, которые на покрытии должны быть расположены правильно.
    Одной или двух таких форточек будет мало для осуществления качественного проветривания. Конечно, количество зависит от размера теплицы. Все они располагаются вверху каркаса.
  • Для автомата проветривания необходимо приобрести датчики, гидравлическое оборудование или другие виды автоматики.
  • Как это работает? Внутри конструкции теплицы под самым верхом устанавливается датчик температур, который имеет подключение к оборудованию, установленному на форточке теплицы.
  • Датчик программируется на определенную температуру, по достижению которой срабатывает автоматика и при помощи гидравлического цилиндра форточка автоматически открывается.

Для программирования такого датчика есть специальная инструкция. Необходимо ее точно соблюдать.

Автоматическое отопление

Конструкцию теплицы нужно отапливать в том случае, если она используется в холодное время года, например, в конце зимы или ранней весной. Для того, чтобы создать растениям комфортную среду надо использовать отопительное оборудование.
Его на сегодняшний день очень большое количество.Как это работает:

  • Есть инфракрасные обогреватели, которые также имеют датчик температур. И как только температурный режим начинает внутри конструкции снижаться, сразу включается автоматика.
    Такой способ является надземным отоплением.
  • Есть также и внутрипочвенное отопление, в котором принимают участие специальные пластины. Они также имеют температурные датчики и включаются автоматически.
    Единственное, что нужно учесть, такие пластины устанавливаются внутри грунта под самими растениями.

Можно использовать автоматику на обычных газовых горелках или так называемых буржуйках из металла. Если газовые горелки некоторых видов могут уже в своем наборе иметь автоматику, которая включает и выключает оборудование, то вот самодельные печи требуют приобретения отдельно автоматической системы.
Устанавливать его не сложно. Пульт управления может находиться рядом с теплицей или в подсобном помещении.
Также используется температурный датчик, который программируется на определенный режим.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий