От чего зависит и как определяется модуль упругости бетона: важные моменты

ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле

()

где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);

F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.

5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле

()

где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;

P1— соответствующее приращение внешней нагрузки;

ε — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

В пределах ступени нагружения деформации определяют по линейной интерполяции.

5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле

()

где ε — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

5.4 Значения ε и ε определяют по формулам:

ε = ε1 — ∑ε1п; ()

ε = ε2 — ∑ε2п, ()

где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;

∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.

Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.

5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:

ε1 = Dl1l1; ()

ε2 = Dl2l2, ()

где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;

l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.

При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.

5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.

Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле

()

где — среднее значение указанных величин в серии образцов данного размера;

yiзначение указанных величин по отдельным образцам;

п — число образцов в серии.

5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.

В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:

а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;

б) модуль упругости бетона отдельных образцов, МПа;

в) средний модуль упругости бетона в серии образцов, МПа;

г) значение коэффициента Пуассона отдельных образцов;

д) среднее значение коэффициента Пуассона в серии образцов;

е) база измерения деформаций, мм;

ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);

з) температура нагрева;

и) температура и относительная влажность воздуха помещения, в котором производились испытания.

В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.

5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .

8.5.3. Модуль упругости и деформации бетона при

КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ

Деформации бетона при приложении нагрузки зависят от его состава, свойств составляющих материалов и вида напряженного состояния. Диаграмма сжатия бетона имеет криволинейное очертание, причем кривизна увеличивается с ростом напряжений (рис. 6.4).

С увеличением прочности бетона уменьшается его деформация и кривизна диаграммы . Низкопрочные бетоны имеют даже нисходящую ветвь диаграммы сжатия. Однако на этом участке сплошность материала уже нарушена, в нем возникают микроскопические трещины, отслоение отдельных частей. В железобетонных конструкциях арматура связывает отдельные части бетона в единое целое и для частных случаев расчета конструкций необходимо учитывать нисходящую ветвь диаграммы сжатия бетона.

На характер нарастания деформаций под действием нагрузки влияют также скорость ее приложения, размеры образца, температурно-влажностное состояние бетона и окружающей среды и другие факторы. Деформация бетона включает упругую, пластическуюи псевдопластическуючасти (рис. 6.4):

Соотношение между ними зависит от состава бетона, использованных материалов и других факторов. Величина пластической и псевдопластической частей возрастает с увеличением длительности нагрузки, понижением прочности бетона, увеличением водоцементного отношения, при применении слабых заполнителей.

О деформативных свойствах бетона при приложении нагрузки судят по его модулю деформации, т. е. по отношению напряжения к относительной реформации, вызываемой его действием. Чем выше модуль деформации, тем менее деформативен материал. Поскольку диаграмма сжатия бетона криволинейна, то его модуль деформации зависит от значений относительных напряжений, постепенно понижаясь с их увеличением (рис.6.5), причем тем больше, чем ниже марка бетона. Обычно определяют либо начальный модуль деформации бетона Ео, когда преобладают упругие деформации, либо модуль деформации при определенном значении, например при= 0,5.

На практике используют эмпирические зависимости модуля деформации от различных факторов. Для расчета железобетонных конструкций важна зависимость модуля деформации при можно определить по формуле:

,

где R– прочность бетона.

В действительности модуль деформации может заметно отличаться от средних значений. В табл. 6.2 приведены значения модуля деформации при сжатии некоторых видов бетона, показывающие большое влияние на него технологических факторов.

Важное значение для расчета конструкций и оценки их поведения под нагрузкой имеют величины предельных деформаций, при которых начинается разрушение бетона, По опытным данным, предельная сжимаемость бетона изменяется в пределах 0.0015…0,003, увеличиваясь при повышении прочности бетона. Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними. Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними

Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними.

Предельная растяжимость бетона составляет 0,0001…0,0015, т.е. примерно в 15…20 раз меньше его предельной сжимаемости.

Предельная растяжимость повышается при введении в бетон пластифицирующих добавок, использовании белитовых цементов, уменьшении крупности заполнителей или при применении заполнителей с высокими деформативными свойствами и сцеплением с цементным камнем.

studfiles.net

МЕТОДЫ НАСЫЩЕНИЯ ОБРАЗЦОВ ВОДОЙ И ЖИДКИМИ НЕФТЕПРОДУКТАМИ

. Насыщение производят методом капиллярного насыщения.

Степень насыщения контролируют по увеличению массы образца путем периодического взвешивания. Образцы выдерживают в ваннах до полного их насыщения жидкостью. За полное насыщение принимают прекращение увеличения массы образца при двух последующих взвешиваниях.

. Насыщение производят в ваннах, выполненных из материалов химически стойких к воде и нефтепродуктам и другим жидкостям.

При насыщении тяжелыми нефтепродуктами (минеральные масла, мазуты и т.п.) ванны должны обеспечивать размещение в них образцов в горизонтальном положении.

Высота ванны должна быть не менее чем на 20 мм выше верхней поверхности уложенных в них образцов.

Ванна насыщения легкими нефтепродуктами (бензин, керосин и т.п.) должна иметь герметически закрывающиеся крышки. Рекомендуется в этом случае в качестве ванн использовать фляги вместимостью 40 л с резиновыми прокладками на крышках.

. Перед насыщением образцы взвешивают, определяют их массу с точностью не менее 0,5 г.

. Для насыщения тяжелыми нефтепродуктами образцы помещают в ванны в горизонтальном положении на расстоянии не ближе 20 мм друг от друга и заливают соответствующей жидкостью так, чтобы ее уровень в ванне был от 5 до 15 мм. Далее жидкость по мере насыщения образца периодически доливают. При этом ее уровень должен находиться на расстоянии от 9 до 15 мм от границы между пропитанным и непропитанным бетоном. Последний раз жидкость доливают так, чтобы ее уровень был на 3 — 5 мм ниже верхней грани образца.

. При насыщении легкими нефтепродуктами и водой образцы помещают в ванны и заливают жидкость так, чтобы ее уровень был не менее чем на 10 мм выше верхней грани образцов. Ванны должны быть герметично закрыты крышками.

. Образцы взвешивают при насыщении их водой или легкими нефтепродуктами один раз в сутки, а при насыщении тяжелыми нефтепродуктами — один раз в 7 сут.

Нормативные показатели

Несколько десятилетий тому назад основным показателем прочности бетонных конструкций была их марка. При помощи данного параметра обозначают среднюю устойчивость стройматериала на сжатие. Однако после появления новых Строительных норм и правил возникли и классы прочности изделий на их сжатие.

Класс — нормативное сопротивление стройматериала осевому сжатию кубов, эталонные размеры которых составляют 15 на 15 на 15 сантиметров. Стоит отметить, что пользоваться средними расчетными показателями прочности рискованно, поскольку существует вероятность, что в одном из сечений конструкции этот параметр может оказаться ниже. Вместе с тем выбирать наименьший показатель накладнее, ведь это неоправданно увеличит сечение изделия.

Главным параметром долговечности в бетоне считается класс. В то же время помимо сжатия, значение придается и осевому растяжению. Растяжение учитывается при проведении расчетов. Таким образом, устойчивость к этому показателю (если показатель не может контролироваться) строители определяют по классу B. Для этого существует специальная таблица, в которой указаны необходимые значения с сопротивлением. В таблице указан класс и устойчивость изделий к растяжению.

Расчетные сопротивления и модули упругости для строительных материалов

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.Таблица 1. Модули упругости для основных строительных материалов

МатериалМодуль упругости Е, МПа
Чугун белый, серый(1,15…1,60) · 105
Чугун ковкий1,55 · 105
Сталь углеродистая(2,0…2,1) · 105
Сталь легированная(2,1…2,2) · 105
Медь прокатная1,1 · 105
Медь холоднотянутая1,3 · 103
Медь литая0,84 · 105
Бронза фосфористая катанная1,15 · 105
Бронза марганцевая катанная1,1 · 105
Бронза алюминиевая литая1,05 · 105
Латунь холоднотянутая(0,91…0,99) · 105
Латунь корабельная катанная1,0 · 105
Алюминий катанный0,69 · 105
Проволока алюминиевая тянутая0,7 · 105
Дюралюминий катанный0,71 · 105
Цинк катанный0,84 · 105
Свинец0,17 · 105
Лед0,1 · 105
Стекло0,56 · 105
Гранит0,49 · 105
Известь0,42 · 105
Мрамор0,56 · 105
Песчаник0,18 · 105
Каменная кладка из гранита(0,09…0,1) · 105
Каменная кладка из кирпича(0,027…0,030) · 105
Бетон (см. таблицу 2)
Древесина вдоль волокон(0,1…0,12) · 105
Древесина поперек волокон(0,005…0,01) · 105
Каучук0,00008 · 105
Текстолит(0,06…0,1) · 105
Гетинакс(0,1…0,17) · 105
Бакелит(2…3) · 103
Целлулоид(14,3…27,5) · 102

Нормативные данные для рассчетов железобетонных конструкций

Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10-3, при классе бетона по прочности на сжатие
B10B15B20B25B30B35B40B45B50B55B60
19,024,027,530,032,534,536,037,038,039,039,5

Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996) Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см&sup2. 2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции. 3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8. 4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a

= 0,56 + 0,006В.Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Нормативные данные для расчетов металлических контрукций

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений Примечания: 1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм). 2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88. 3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см²).Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990)) Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*. 2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице. 3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов здесь не показаны.

Упругие параметры физических тел

Упругость – свойство вещества оказывать влияющей на него силе механическое сопротивление и принимать после её спада исходную форму. Противоположность упругости называется  пластичность.

Упругость тел – одна из основных физических констант, связанная с внутренним строением вещества.

Упругость характеризует свойство веществ сопротивляться изменению их объема и формы (твердые тела) или только объема (жидкости, газы) под воздействием механических напряжений, что обуславливается возрастанием внутренней энергии веществ. 

 При упругих деформациях вещество восстанавливает свои первоначальные объем и форму после прекращения действия сил, вызывающих их деформацию. В простейших случаях малых деформаций зависимость линейная – и действует закон Гука, на котором основана теория упругости. Согласно этой теории малые деформации пропорциональны приложенной нагрузке:

 (5.1, 5.2 )

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Рисунок 1.12.1. Деформация растяжения (x > 0) и сжатия (x <� 0). Внешняя сила

При малых деформациях (|x| <<� l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Fx = Fупр = –kx.

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2. Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3. Деформация растяжения пружины.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Модель. Закон Гука

 

От чего зависит модуль упругости бетона?

Упругие свойства бетона зависят от факторов:

  • качества и объемного содержания заполнителей;
  • класса материала;
  • температуры воздуха и интенсивности радиоактивного излучения;
  • влажности среды;
  • времени воздействия нагрузки;
  • условий твердения смеси;
  • возраста бетона;
  • армирования.

Заполнители

Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.

Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.

Класс бетона

Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10 -3 , минимальный показатель у композита класса В10- 19 МПа*10 -3 .

Температура и радиация

Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.

Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.

Влажность

Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.

Время приложения нагрузки

Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.

Условия набора прочности

При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.

Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.

Возраст бетона

Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.

Армирование конструкций

Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.

Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.

виды, классификация. От чего зависит

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.

Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60 Тяжёлые Естественный цикл затвердевания — — — 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40 Тепловая обработка при атмосферном давлении — — — — 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36 Автоклавная обработка — — — — 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30 Мелкозернистые А-группа (естественное отвердение) — — — — 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5 — — — — Тепловая обработка при атмосферном давлении — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5 — — — — Б-группа (естественное отвердение) — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 — — — — — — Теплообработка при автоклавном давлении — — — — 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5 В-группа автоклавного отвердения — — — — — — — — — 16,5 18 19,5 21 21 22 23 24 24,5 25 Лёгкие и горизонтальные — средняя плотность D 800 — — — 4 4,5 5 5,5 — — — — — — — — — — — — 1000 — — — 5 5,5 6,3 7,2 8 8,4 — — — — — — — — — — 1200 — — — 6 6,7 7,6 8,7 9,5 10 10,5 — — — — — — — — — 1400 — — — 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5 — — — — — — 1600 — — — — 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18 — — — — — 1800 — — — — — 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21 — — — — 2000 — — — — — — 14,5 16 17 18 19,5 21 22 23 23,5 — — — — Ячеистые, автоклавное твердение, плотность D 500 1,1 1,4 — — — — — — — — — — — — — — — — — 600 1,4 1,7 1,8 2,1 — — — — — — — — — — — — — — — 700 — 1,9 2,2 2,5 2,9 — — — — — — — — — — — — — — 800 — — — 2,9 3,4 4 — — — — — — — — — — — — — 900 — — — — 3,8 4,5 5,5 — — — — — — — — — — — — 1000 — — — — — 6 7 — — — — — — — — — — — — 1100 — — — — — 6,8 7,9 8,3 8,6 — — — — — — — — — — 1200 — — — — — — 8,4 8,8 9,3 — — — — — — — — — — Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация

При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция

Модуль упругости — от чего он зависит

Бетонные арки. Фото

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Автоклавная обработка

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (

Понятие модуля упругости

Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.

Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.

С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.

В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.

В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.

Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.

Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:

где E — модуль упругости (Па);

εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l).

Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.


График зависимости деформаций от напряжений при постепенном загружении

Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:

где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).

Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10 -3 .

Поделитесь в социальных сетях:FacebookX
Напишите комментарий